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Abstract: Retinopathy of prematurity (ROP) is an eye disease, which affects prematurely born
infants with low birth weight and is one of the main causes of children’s blindness globally.
In recent years, there are many studies on automatic ROP diagnosis, mainly focusing on ROP
screening such as “Yes/No ROP” or “Mild/Severe ROP” and presence/absence detection of “plus
disease”. Due to the lack of corresponding high-quality annotations, there are few studies on ROP
zoning, which is one of the important indicators to evaluate the severity of ROP. Moreover, how to
effectively utilize the unlabeled data to train model is also worth studying. Therefore, we propose
a novel semi-supervised feature calibration adversarial learning network (SSFC-ALN) for 3-level
ROP zoning, which consists of two subnetworks: a generative network and a compound network.
The generative network is a U-shape network for producing the reconstructed images and its
output is taken as one of the inputs of the compound network. The compound network is obtained
by extending a common classification network with a discriminator, introducing adversarial
mechanism into the whole training process. Because the definition of ROP tells us where and
what to focus on in the fundus images, which is similar to the attention mechanism. Therefore, to
further improve classification performance, a new attention mechanism based feature calibration
module (FCM) is designed and embedded in the compound network. The proposed method
was evaluated on 1013 fundus images of 108 patients with 3-fold cross validation strategy.
Compared with other state-of-the-art classification methods, the proposed method achieves high
classification performance.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Retinopathy of prematurity (ROP) is retinal vascular proliferative blindness disease, which
frequently occurs in premature babies with low birth weight (less than 1500 g) and accounts for
about 19% of the causes of blindness in children worldwide [1,2]. It is reported that in 2010,
about 184700 preterm infants in the world had ROP with different degrees, and about 20000 of
them had severe visual impairment or blindness [1]. In addition, ROP will lead to strabismus in
30% of the premature infants without timely treatment [3].

Early diagnosis and timely treatment of ROP can effectively prevent the growth of the abnormal
vessels, thus prevent the disease turning into blindness [4,5]. The diagnosis and analysis of ROP
is usually based on the premature infants’ retinal fundus images obtained by using RetCam3,
which is a digital retinal camera with high-quality and wide-angle image [6]. According to the
International Classification of ROP (ICROP) [7–9], the diagnosis of ROP is subclassified by
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zone, stage and plus disease. In this study, we focus on studying the automatic recognition of
three zones of ROP, which is defined according to the location of the symptom of ROP relative to
the optic disc and macular, as shown in Fig. 1. The detailed definition of Zone I to III are listed
in Table 1 and Fig. 2 shows the examples of ROP with different zones.

Fig. 1. Standard form for documenting zone.

Fig. 2. Examples of zone I, zone II and zone III. The optic disc and macula are in the green
and yellow boxes respectively, while the white and black dots indicate the center of the optic
disc and the fovea of the macula respectively. (a) Zone I. (b) Zone II. (c) Zone III.

Table 1. Definition of zone I to III of ROP.

Zone Definition

I A circular area with a radius of twice the distance from the center of the optic disc to the fovea of the macula.

II An annular area with a radius of the distance from the optic disc to the nasal serrated margin except zone I.

III The remaining crescent shaped areas outside zone I and II vitreous.

In the past, many related studies on automated or semi-automated methods for ROP diagnosis
are mainly for the recognition of plus disease, which is characterized by dilation and tortuosity
of retinal vessels. For example, Wittenberg et al. used “ROPTool” system to assist the
ophthalmologists in diagnosing plus disease by calculating tortuosity of vessels, which was a
manual or semi-automated process [10]. Ataer-Cansizoglu et al. used support vector machine to
learn the best relationship between features and diagnosis for automatic diagnosis of three types
of plus diseases that performed as well as experts [11]. However, the clinical application of the
system is limited due to the need of manually tracked and segmented vessels as input, which is a
time-consuming and laborious work. Worrall et al. used pre-trained GoogLeNet with approximate
Bayesian posterior for fully automated plus disease diagnosis, which was the first time to use deep
convolutional network for ROP diagnosis [12]. Brown et al. proposed an “i-ROP” deep learning
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system for 3-level classification of plus disease, which achieved a high classification accuracy [13].
Meanwhile, there are also some studies for ROP screening, ROP severity grading, ROP staging
and ROP zoning [14–19]. For example, a deep learning system called “DeepROP” was developed
for the detection of ROP, which was based on Inception-V2 pre-trained on ImageNet and achieves
high classification accuracy [14,15]. Zhang et al used VGG16 pre-trained on ImageNet for
automatic ROP screening [16]. VGG16 and ResNet50 pre-trained on ImageNet were used for the
automated recognition of aggressive posterior retinopathy of prematurity (AP-ROP), which is
characterized by severe vasodilation and distortion of the posterior pole of the retina [17]. A
joint segmentation and multi-instance learning based CNNs was proposed for the automatic stage
of ROP, which only involved 4-level ROP staging [18]. Our previous work included automated
ROP screening by using ResNet18 pre-trained on ImageNet with attention mechanism [19],
automatic ROP zoning by using ImageNet pre-trained DenseNet121with attention mechanism
and deep supervision strategy [20] and automatic ROP staging with transfer learning, feature
fusion and ordinal classification strategy [21]. In addition, Zhao et al. developed a deep learning
framework to automatically identify zone I, which can draw the boundary of zone I on the fundus
images as a diagnostic aid [22]. There are some limitations in [22]. First, the recognition of
zone I is based on the detection of optic disc and macula, so the algorithm cannot be used to
analyze the retinal fundus images without optic disc and macula. Second, the performance of
this method depends on the detection accuracy of optic disc and macula. However, due to the
incomplete development of the macula in the newborn, the macular structure is not obvious in
the corresponding fundus images, which may lead to the low recognition accuracy of the macula,
and then affect the recognition accuracy of ROP zone I. Finally, the algorithm only realizes
the automatic recognition of zone I and does not involve the automatic recognition of zone II
and zone III, which is also important for the assessment of ROP severity. Recently, Ranjana
et al. proposed a method using U-Net and circle Hough transform to detect zones I, II and III,
which involves optic disc and blood vessel segmentation [23]. In their method, macula’s location
was determined according to the Refs. [24] and [25] and repeated verification by senior ROP
specialists. In addition, the detection of zone III in [23] is limited.

In conclusion, deep learning holds promise for automated and objective diagnosis of ROP
in digital fundus images. However, there are still some challenges in achieving accurate ROP
zoning. On the one hand, compared to ROP screening and ROP staging task, which generally
have relatively more labeled data, especially ROP screening, the data for the ROP zoning task is
limited and the corresponding annotation is difficult to be obtained. On the other hand, different
from ROP screening and ROP staging task, which only need to correctly identify lesion and the
difference between lesions, ROP zoning not only need to pay attention to lesion but also the
positional relationship between lesion and optic disc and macula. As we all know, a deep neural
network usually needs large numbers of images with corresponding high-quality annotations,
which is time-consuming and requires large amounts of expert knowledge. Therefore, traditional
CNN-based classification networks such as VGGNet, GoogleNet, DenseNet and ResNet may
be ineffective. Aiming at the first challenge, semi-supervised deep learning algorithms have
attracted our attention, which can combine labeled data sets with unlabeled data sets. Recently,
many related works have used semi-supervised methods based on generative adversary networks
(GANs) and achieved good classification performance in different medical image classification
tasks [26–29]. In these networks, a discriminator of GAN and a classifier are unified into a single
network, and the common generator takes noise as input to fit the real data statistical and produces
the fake image as real as possible. Considering the simplicity of the training and inspired by
the image reconstruction and transformation with GAN [29–32], the generative network in our
method is a U-shape network, which takes original unlabeled fundus images of ROP as input
instead of random noise and reconstructs input images as much as possible. Meanwhile, the
discriminator strives to distinguish between input images and reconstructed images. In addition,
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the definition of ROP shown in Table 1 tells us where and what to focus on in the fundus images,
which is similar to attention mechanism [33]. Meanwhile, previous studies have also shown
that attention mechanisms can help to learn intermediate features to improve the performance of
convolutional neural networks [34,35]. Therefore, focusing on the second challenge and inspired
by Dual Attention Network (DANet) and Squeeze-and-Excitation block (SE block) [34,35], we
propose a new attention module named feature calibration module (FCM), which can adaptively
calibrate the features of spatial and channel dimensions and promote feature learning. To sum
up, we apply semi-supervised method based on adversarial learning and attention mechanism
for automatic ROP zoning with 3-level in this study, which can achieve good performance with
labeled data and unlabeled data. The main contributions of this paper can be summarized as
follows:

(1) A novel semi-supervised classification network based on adversarial learning is proposed
for 3-level ROP zoning, introducing unlabeled data to assist classifier training and improving
the generalization ability of the model. It is the first time to employ the semi-supervised
learning method for ROP zoning.

(2) A novel feature calibration module is proposed, which can adaptively calibrate both the
features of spatial and channel dimensions to promote feature learning, and further improve
the accuracy of ROP zoning.

(3) Extensive experiments are conducted to evaluate the effectiveness of the proposed method.
Experimental results show that the proposed method outperforms other state-of-the-art
classification methods in ROP zoning task.

The remainder of this paper is organized as follows: The proposed method for automatic ROP
zoning is introduced in Section 2. Section 3 presents the experimental results in detail. In section
4, we conclude this paper and suggest future work.

2. Methodology

2.1. Overview

Our proposed SSFC-ALN based ROP zoning framework is shown in Fig. 3(a), which consists of
a generative network and a compound network. The generative network is a U-shape encode and
decode network, which is used to reconstruct the original input fundus image. Supposing the
total fundus image data set is DT={DL, DU}, DL = {(xi, yi)} and Du = {xi} represent the labeled
data and the unlabeled data respectively, in which xi is the original fundus image and yi is the
corresponding label of xi. In addition, DR is the reconstructed fundus image. The proposed
SSFC-ALN based ROP zoning framework is optimized as follows:

(1) Generative network initialization: the generative network is randomly initialized through
normal distribution.

(2) Generative network: we fix the compound network first and then train the generator once
by minimizing the Lunsup

G , which will be described in detail below.

(3) Compound network initialization: the weights of DenseNet121 pre-trained on the ImageNet
are used to initialize the compound network.

(4) Compound network training: We fix the generative network and train the compound
network twice by minimizing Lsemi−sup

COM , which will be described in detail below.

(5) Iterate the training process of (2) and (4) for several epochs until the compound network
converges.
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Fig. 3. Overview of the proposed SSFC-ALN based ROP zoning framework. The generative
network for image reconstruction is in the red dotted box, where ‘fu_1’ and ‘fu_2’ are
skip fusion operators as shown in (b) and (c) respectively, where ‘TrConv’, ‘in’, ‘dr’ and
‘Concat’ represent transpose convolution operator, instance normalization operator, dropout
operator and concatenation operator. The compound network consisting of a classifier and
a discriminator is in the blue dotted box, where ‘MP’ and ‘AAP’ represent max pooling
operator and adaptive average pooling operator, ‘L’ represents multiple stacked dense
connection modules and ‘FCM’ represents the proposed feature calibration module as shown
in (d).

2.2. SSFC-ALN framework

Similar to the previous GAN-based methods [26–28], a classifier and a discriminator of GAN are
unified into a single network and both of them share the same convolutional feature extractor.
For convenience, we call this network as compound network. Original GAN [36] generates
images based on random noise, but the randomness of its input also causes the uncontrollability
of the output. To handle this problem, cGAN improves the controllability of the generated data
by introducing some specific input signals as control conditions, such as class labels or data
from other modalities [37]. Meanwhile, many previous medical image processing works also
directly adopted images as input to generate target domain images [38–40], which attract our
attention and prompt us to use the original image as the input of the generative network for image



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 1973

reconstruction. As can be seen from Fig. 3(a), our framework consists of two subnetworks, one
for producing fake images, and the other for classification. The former is a generative network for
images reconstruction with U-shape architecture, which is an end-to-end (image in, image out)
network consisting of a series of convolutional layers, transpose convolutional layers, instance
normalized layers and dropout layers, and contains a contraction path for capturing semantics
and a symmetric extension path for precise positioning. The latter is a compound network using
as classifier and discriminator, respectively. In addition, considering the convergence speed and
memory overhead, we exploit DenseNet121 [41] pre-trained on ImageNet [42] as the feature
extractor for the compound network followed by two different fully connected layers, which are
modified according to the outputs two-dimension values. As can be seen from Fig. 3(a), compared
with the general classification networks, we introduce semi-supervised learning through the
generative network in the training process, which can introduce the adversarial mechanism to
enhance the feature extraction ability of the classifier. Especially, total parameters of the proposed
SSFC-ALN are about 20.9923M in the training stage, while in the test stage, only the trained
compound network with about 7.3885M parameters is used to realize ROP zoning. In addition,
our framework schematic depicted in Fig. 3(a) is theoretically easy to deploy to other common
convolutional neural networks, such as ResNet34, ResNet50, VGG16, Inceptions et al [43–45].

2.3. Feature calibration module (FCM)

The definition of zones is according to the optic disc and macula location with the clinical lesions
features such as ridge and blood vessels, whose zoning characteristics are depicted in Table 1. As
can be seen from Table 1, the definition of ROP tells us where and what to focus on in the fundus
images, which is similar to attention mechanism [33]. Therefore, the attention mechanism is
adopted to enhance feature learning and improve the performance of ROP zoning.

The essence of attention mechanism is to locate the information of interest and suppress useless
information [34,35], which can be mainly divided into three types: spatial attention module,
channel attention module and spatial and channel mixed attention module. Many previous studies
have shown that applying attention mechanism to convolutional neural network can increase its
representation power to focus on important features, suppress the irrelevant ones and improve the
performance in computer vision tasks [34,35], [46–51]. For example, Hu et al. [35] proposed a
compact module named Squeeze-and-Excitation module to enhance the representational power
of the network by modeling channel-wise relationship [35]. Fu et al. proposed a Dual Attention
Network (DANet) to capture rich context dependence based on self-attention mechanism, which
emphasizes meaningful features along channel and spatial axes [34].

To better learn the potential relationship between the location and lesion of ROP zoning,
inspired by many previous successful applications of attention mechanisms, a novel attention
module named feature calibration module (FCM) is proposed and embedded into the compound
network, which allows the network to recalibrate features from the two dimensions of space and
channel, and fuses the two calibrated features to obtain more expressive and effective feature.
Specifically, given a feature map F ∈ RC,H,W as input, FCM can generate a spatial attention map
S ∈ RC,H,W and a channel attention map T ∈ RC,H,W in parallel as shown in Fig. 3(d). Then, we
fuse the two features to obtain better representations as illustrated in Eq. (1).

N = S ⊙ T (1)

where ⊙ denotes a feature fusion operator. In this paper, we adopt max fusion operator to obtain
the maximum value of the features S and T.

Spatial attention module. Spatial attention can be understood as where the neural network
pays attention to. Through spatial attention mechanism, the spatial information in the original
feature can be transformed into another space and the key information can be retained. As shown
in Fig. 3(d), given an input feature F ∈ RC,H,W , we first feed it into three convolution layers
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with the size of 1*1 to generate three new feature maps A, B and D respectively, which are
similar to the three branches of self-attention (query, key and value) [34,52] ({A, B} ∈ RC/r,H,W

and D ∈ RC,H,W ). Second, we reshape A and B to RC/r,H∗W and D to RC,H∗W , where C, H and
W represent the channel numbers, height and width of the input feature and r is compression
ratio. Then, we do a matrix multiplication between the transpose of A and B, and use a softmax
activation function to calculate the spatial attention map E ∈ RH∗W,H∗W as illustrated in Eq. (2).
After that, we do a matrix multiplication between D and the transpose of E and reshape the
obtained result to RC,H,W . Finally, we do an element-wise summation between the original input
feature F and the above result to obtain the final spatial attention output S ∈ RC,H,W as illustrated
in Eq. (3).

eji =
exp(Ai · Bj)∑︁H∗W

i=1 exp(Ai · Bj)
(2)

Sj =

H∗W∑︂
i=1

(ejiDi) + Fj (3)

where eji measures the influence of the i-th position on j-th position. The more similar feature
representations of the two positions, the greater correlation between them.

Channel attention module. Channel attention can be understood as what the neural network
focus on. Different from spatial attention mechanism, channel attention can adaptively recalibrate
the characteristic response of channels by explicitly modeling the interdependence between
channels [34]. The typical representative of channel attention modules is SE block, which
uses two fully connected layers to learn the relationship between different channels, thereby
introducing a large number of parameters and increasing the risk of overfitting. Therefore, to
reduce the calculations, two 1×1 convolution kernels are used to replace the fully connected
layers in this paper. As illustrated in Fig. 3(d), SE block consists of a global average pooling layer,
two convolutional layers with the kernel size of 1*1, a ReLU and a Sigmoid activation functions.
Given an input feature F ∈ RC,H,W , the design of SE block mainly consists of three steps:

1) Global average pooling (GAP) operator is used to squeeze global spatial information into a
channel descriptor G, where G ∈ RC,1,1.

G = GAP(F) ∈ RC,1,1 (4)

2) The channel descriptor G is sequentially fed into a convolutional layer with the kernel
size of C/r×1×1, a ReLU activation function, a convolutional layer with the kernel size of
C×1×1 and a Sigmoid activation function to generate channel attention weights W ∈ RC,1,1

ranging from 0 to 1, which is the excitation operator for learning the dependence of each
channel and adjusts the feature map according to the different dependence and where C is
channel number and r is the compression ratio.

W = Sigmoid(Conv1 ×1(ReLu(Conv1 × 1(G)))) ∈ RC,1,1 (5)

3) Finally, we multiply channel attention weights W by the original input feature F and do
an element-wise summation with the original input feature F to obtain the final channel
attention output T ∈ RC,H,W .

T = (F ∗ W) + F (6)

2.4. Loss functions

In our proposed network, the generative network takes the original unlabeled fundus images as
input for images reconstruction, and the compound network outputs the results of classification
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and determines whether a fundus image is reconstructed by the generative network or not. Based
on the analysis, the loss of our SSFC-ALN is divided into two parts: the loss of generative
network and the loss of compound network.

The loss of generative network is formulated as:

Lunsup
G = α ∗ LADV_G + (1 − α) ∗ L1(G) (7)

LADV_G = −logD(G(x)) (8)

L1(G) =
1

W ∗ H

W∑︂
w=1

H∑︂
h=1

|Iw,h − G(Iw,h)| (9)

where LADV_G and L1(G) represent the adversarial loss and the image reconstruction loss of the
generator in an unsupervised subset, respectively. α is a super-parameter referring to the weight
of the unsupervised loss and is set to 0.001 in this study. W and H denote the size of an input
fundus image, while Iw,h indicates the image pixel value. Both W and H are 256 in this study.

The loss of compound network is formulated as follow:

Lsemi−sup
COM = β ∗ Lsup

CLS + γ ∗ Lunsup
ADV_D_U + δ ∗ Lunsup

ADV_D_R (10)

Lsup
CLS = −

1
m

m∑︂
i=1

K∑︂
k=1

I(ti = k)log(p(k|xi)) (11)

Lunsup
ADV_D_U = −logD(x) (12)

Lunsup
ADV_D_R = −log(1 − D(G(x))) (13)

where Lsup
CLS is the classification loss of classifier (K categories) in supervised subset, Lunsup

ADV_D_U
and Lunsup

ADV_D_R are the adversarial loss of discriminator in unsupervised subset. β, γ and δ are
super-parameters and all of them are set to 1

3 in our experiments. m is the number of samples in
per mini-batch, ti denotes the class label of image xi. I(·) is an indicator function, which equals
one if ti is equal to k.

3. Experiments and results

In this section, we first introduce the experimental dataset in detail. Then, the experimental setup
will be described, including the parameter settings in the training phase and evaluation metrics in
the testing phase. Finally, we will give the detailed experimental results and the corresponding
analysis.

3.1. Dataset

In this study, Guangzhou Women and Children’s Medical Center provided fundus images used
for ROP zoning. These images with a resolution of 640× 480× 3 were taken using RetCam3
camera by professional technicians between 2012 and 2015. The collection and analysis of image
data were approved by the Institutional Review Board of Guangzhou Women and Children’s
Medical Center and adhered to the tenets of the Declaration of Helsinki. An informed consent
was obtained from the guardians of each subject to perform all the imaging procedures. The
gestation age varies from 26 to 41 weeks, with a mean value of 32 weeks. Fifty percent of infants’
gestation age is under 32 weeks and 42% of the infants’ birth weight is less than 1500 grams.

A total of 1013 fundus images of 108 patients from 192 examinations were labeled by a
team of two attending ophthalmologists with over three years of ROP clinical experience and
one experienced ROP specialist with more than fifteen years of ROP clinical experience from
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Guangzhou Women and Children Medical Center. The labeling of ROP zoning is based on the
symptoms described in Table 1, and only the data with consistent results were used to evaluate
the proposed network. It is statistically found that the category distribution is unbalanced, where
most ROP data are in zone II and III and the data of zone I is relatively few. The possible reason
is that effective treatment will be carried out before the disease progresses to the severest zone I
in most cases. To evaluate the effectiveness of the proposed method, a 3-fold cross validation
strategy is adopted. The training set and testing set of 3-fold are shown in the Table 2, which
are randomly divided according to the examination of left and right eyes of each patient. In
addition, we also collected 1317 fundus images of 105 premature infants as the unlabeled data set
of this study. To reduce the computational cost and eliminate the effects of different scales and
illuminations, all fundus images are downsampled to 256 ×256× 3 using bilinear interpolation
and normalized to [1].

Table 2. Dataset used for training and testing the proposed
method in this study.

Fold
Training Testing

Zone I Zone II Zone III Zone I Zone II Zone III

1 103 351 254 46 150 109

2 100 351 254 49 160 109

3 104 342 254 45 159 109

3.2. Experimental setup

3.2.1. Parameter setting

The proposed SSFC-ALN framework is implemented based on the PyTorch platform. We use a
NVIDIA Tesla K40 GPU with 12GB memory to train the model with back-propagation algorithm
by minimizing the loss function as shown in Eqs. (7) and (10). Adam is used as the optimizer
to minimize the loss functions. Both initial learning rate and weight decay are set to 0.0001
to optimize the network. The batch size and epoch are set to 16 and 400, respectively. The
compression ratio r is set to 16 in our study. In addition, the compound network updates twice as
frequently as the generator in our proposed method. During training, all networks are trained
with identical optimization schemes and we save the best model on validation set.

3.2.2. Evaluation metrics

Considering the category imbalance of the dataset shown in Table 2 and to fully and fairly
evaluate the classification performance of different methods, four common classification metrics
including weighted recall (W_R), weighted precision (W_P), weighted F1 score (W_F1) and
Kappa index [53,54] are introduced to evaluate the ROP zoning performance.

3.3. Comparison experiments

We validate the proposed method on 1013 fundus images of 108 patients with a 3-fold cross
validation strategy. Table 3 shows the quantitative results of different methods. As can be
observed from Table 3, we compare our proposed method with other excellent supervised and
semi-supervised CNN based classification networks, including ResNet34 [43], ResNet50 [43],
ResNext50 [55], ResNext101 [55], InceptionV4 [44], DenseNet169 [41], SE_Resnet50 [35],
SE_ResNext50 [35], EfficientNetB2 [56], ImprovedGAN [57] and Pix2PixGAN [32]. For
the sake of fairness, DenseNet121 pre-trained on ImageNet is used as the feature extractor of
the discriminator and classifier of ImprovedGAN and Pix2PixGAN. For the generator of the
ImprovedGAN, we use 200-dimension vectors as input and add several transposed convolutional
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layers and batch normalized layers to the original version in order to generate 256× 256× 3 fundus
images [32]. The generator of Pix2PixGAN is U-shape encoder-decode architecture, which is
same as the original version in [29]. Especially, for generators and discriminators, the training
strategies of Pix2PixGAN and ImprovedGAN are the same as their original versions, and the
training strategies of their classifiers are the same as the proposed network. In addition, to verify
the effectiveness of the proposed FCM and semi-supervised adversarial learning and training
strategies and to explore the influence of labeled data size, a series of ablation experiments are
conducted. For convenience, we call the basic DenseNet121 pre-trained on ImageNet as the
Baseline method.

Table 3. ROP zoning results of different methods.

Methods W_R W_P W_F1 Kappa Parameters (M)

ResNet34 [35] 0.7895± 0.0038 0.7986± 0.0066 0.7874± 0.0092 0.7434± 0.0417 21.2862

ResNet50 [35] 0.8453± 0.0150 0.8504± 0.0157 0.8451± 0.0143 0.8141± 0.0140 23.5142

ResNext50 [47] 0.8000± 0.0255 0.8054± 0.0247 0.7982± 0.0290 0.7523± 0.0556 22.9861

ResNext101 [47] 0.8219± 0.0414 0.8330± 0.0315 0.8179± 0.0495 0.7659± 0.0915 42.1349

InceptionV4 [36] 0.7061± 0.0155 0.7078± 0.0180 0.7004± 0.0121 0.6254± 0.0404 41.1474

DenseNet169 [32] 0.8509± 0.0467 0.8535± 0.0447 0.8486± 0.0502 0.8263± 0.0677 12.4895

SE_ResNet50 [31] 0.8518± 0.0640 0.8617± 0.0587 0.8468± 0.0709 0.8005± 0.1298 26.0452

SE_ResNext50 [31] 0.8222± 0.0489 0.8304± 0.0428 0.8210± 0.0493 0.7892± 0.0594 25.5170

EfficientNetB2 [48] 0.7813± 0.0249 0.7940± 0.0172 0.7783± 0.0297 0.7164± 0.0580 7.7095

ImprovedGAN [49] 0.8771± 0.0326 0.8832± 0.0363 0.8754± 0.0407 0.8333± 0.0594 22.4309

Pix2PixGAN [29] 0.8666± 0.0225 0.8710± 0.0226 0.8657± 0.0228 0.8283± 0.0521 64.1248

ResNet50+ALN 0.8988± 0.0396 0.9006± 0.0378 0.8985± 0.0402 0.8711± 0.0767 37.1180

DenseNet169+ALN 0.8884± 0.0534 0.8909± 0.0508 0.8985± 0.0550 0.8097± 0.1072 26.5249

Baseline 0.7800± 0.0198 0.7911± 0.0123 0.7769± 0.0252 0.7226± 0.0574 6.9569
SSFC-ALN 0.9103± 0.0275 0.9155± 0.0278 0.9097± 0.0266 0.8919± 0.0446 20.9923

Firstly, compared to Baseline, the performance of the proposed SSFC-ALN has been greatly
improved, which improves the W_R, W_P, W_F1 and Kappa by 16.71%, 15.72%, 17.09%
and 23.43%, respectively. Then, compared with other state-of-the-art supervised classification
networks, the proposed method gets an overall improvement in terms of all metrics with
comparable or less model complexity. For example, compared to the second best supervised
learning classification network (SE_ResNet50), the W_R, W_P, W_F1 and Kappa of the proposed
method increase from 0.8518, 0.8617, 0.8468 and 0.8005 to 0.9103, 0.9155, 0.9097 and 0.8919,
respectively. In addition, compared to ResNet34, which has the comparable model complexity,
our method has also made great improvement. The results show the effectiveness of semi-
supervised learning. Similarly, ImprovedGAN and Pix2PixGAN also achieve great improvement
by introducing semi-supervised learning. It is worth noting that the proposed SSFC-ALN has
better performance than the above two semi-supervised GAN based methods and the model
complexity is less, which may benefit from the appropriate optimization strategies adopted in
the adversarial learning of generator and discriminator in this study. Notably, it can be seen
from Table 3 that the zoning performance of “Baseline+FCM” was lower than ResNet50,
DenseNet169 and SE_ResNet50. To further prove the advantage of selected compound network
(Baseline+ FCM), we also conduct the comparison experiments, of which we use ResNet50 and
DenseNet169 as compound network (ResNet50+ALN and DenseNet169+ALN), respectively.
There are two findings from Table 3. First, ResNet50 and DenseNet169 with semi-supervised
adversarial learning outperform the supervised ResNet50 and DenseNet169, which further prove



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 1978

Table 4. Ablation study of FCM and semi-supervised adversarial learning.

Methods W_R W_P W_F1 Kappa Parameters (M)

Baseline 0.7800± 0.0198 0.7911± 0.0123 0.7769± 0.0252 0.7226± 0.0574 6.9569
Baseline+FCM 0.8238± 0.0097 0.8377± 0.0239 0.8212± 0.0060 0.7870± 0.0083 7.3885

Baseline+DANet 0.7973± 0.0348 0.8050± 0.0366 0.7956± 0.0369 0.7428± 0.0781 7.3451

Baseline+SE 0.8088± 0.0171 0.8175± 0.0130 0.8072± 0.0192 0.7607± 0.0427 6.9989

Baseline+DANet1 0.8184± 0.0167 0.8254± 0.0183 0.8172± 0.0151 0.7597± 0.0168 7.3880

Baseline+ALN 0.8945± 0.0361 0.9064± 0.0348 0.8984± 0.0395 0.8880± 0.0455 20.5602

the effectiveness of semi-supervised adversarial learning. Second, the proposed SSFC-ALN has
better performance than ResNet50+ALN and DenseNet169+ALN with less model parameters,
which proves the effectiveness of Baseline+FCM used in this study.

3.4. Ablation experiments

3.4.1. Ablation experiment for FCM

To prove the effect of the proposed FCM, we have conducted the ablation experiments as shown
in Table 4. As can be seen from Table 4, the proposed FCM embedded in the classification
network (Baseline+FCM) with a small increase in the amount of model parameters has made
improvement over the Baseline in terms of all four evaluation indicators. Compared with the
Baseline, the W_R, W_P, W_F1 and Kappa increase from 0.7800, 0.7911, 0.7769 and 0.7226 to
0.8238, 0.8377, 0.8212 and 0.7870, respectively. In addition, we also compare the proposed FCM
with DANet and SE block. As shown in Table 4, the proposed FCM outperforms DANet and SE
block. In addition, to further explore the advantage of using the SE block as the channel attention
module of FCM, we have conducted an experiment, of which SE block replaces the original
channel attention module from DANet (named “Baseline+DANet1”). As can be observed
from Table 4, Baseline+DANet1 outperforms the Baseline+DANet, which shows SE block as
channel attention module is better than the original channel attention module from DANet in our
ROP zoning task. The possible reason is that the original channel attention module from DANet
directly calculate the channel attention map from the original features without any convolution
and nonlinear operation, while SE module uses 1×1 convolution and ReLu activation function,
which can improve the expression and fitting ability of the network. To further demonstrate the
effectiveness of the proposed FCM, we apply the “class activation mapping” technology [58] to
obtain the heat maps of fundus images with different ROP zones for the qualitative analysis, which
calculates the last convolutional outputs and visualizes the focus of the network. We compare
the visualization results of FCM-intergraded network (Baseline+ FCM) with Baseline. Figure 4
illustrates the visualization results. As can be observed from Fig. 4, the proposed FCM can focus
on the target object regions better than Baseline. Taking the images in the first column of Fig. 4
as an example, Baseline only focuses on the optic disc area but not the ROP-related pathology,
while FCM-intergraded network (Baseline+ FCM) focuses on these two areas. Benefiting from
it, our method can explicitly exploit information from the learned area, which is discriminative
for ROP zoning. In addition, the target class scores increase accordingly, which indicates the
proposed FCM can recalibrate the intermediate feature and make good use of the information of
the target area and aggregate features from it to further improve the classification performance in
our task.

3.4.2. Ablation experiment for semi-supervised adversarial learning

In this study, we propose a semi-supervised classification framework based on adversarial learning.
Previous studies [23–29] suggest that, compared with the common supervised classification



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 1979

Fig. 4. CAM visualization results. The first row is the input images. The ground-truth label
is shown on the top of each input image and p denotes the softmax score of each network
for the ground-truth class. The optic disc and macula are in the green and yellow boxes
respectively, and the ROP-related pathologies is indicated by the red marked arrows. The
optic disc, macula, and ROP-related pathologies are the target areas that ophthalmologists
are focusing on during ROP zoning recognition. The second row and the last row are the
visualization results of Baseline and FCM-integrated network (Baseline+FCM).

network, the performance of the network can be improved by introducing semi-supervised
learning based on GAN in the case of limited labeled data. To validate this viewpoint, we have
also conducted ablation experiments with and without semi-supervised learning, which are shown
in Table 4. As can be seen from Table 4, introducing semi- supervised learning based on GAN
achieves a better classification performance in terms of all four metrics, with the W_R, W_P,
W_F1 and Kappa increasing from 0.7800, 0.7911, 0.7769 and 0.7226 to 0.8945, 0.9064, 0.8984
and 0.8880, respectively. The results demonstrate the introduction of semi-supervised learning
based on adversarial mechanism can reduce the dependence on labeled data and achieve better
classification performance with limited labeled data in our ROP zoning task.

3.4.3. Ablation for training frequency

In this study, we introduce the idea of adversarial learning, trying to guide the training of classifier
through the generative network. Based on the alternate training between the two models, the
classifier model can better complete the classification task. At present, the mainstream scheme is
to train two networks alternatively with 1:1 frequency. Considering that in different tasks different
training frequency may bring different performances, we conduct several ablation experiments to
explore the influence of training frequency of the generative network and compound network
on the performance of ROP zoning. ‘SSFC-ALN_2:1’ denotes the generative network and the
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compound network are trained alternatively at a frequency of 2:1 and the meaning of the others
is similar. The quantitative results are shown in Table 5. As can be seen from Table 5, with the
decrease of the training frequency ratio of the generative network and the compound network,
the performance of ROP zoning first improves and then decreases, and the best performance is
obtained when the generator and the compound network are trained alternatively at a frequency
of 1:2. The results indicate that appropriate training frequency can make the game between
generative network and compound network more meaningful, so as to improve the overall
performance of the classifier.

Table 5. Ablation study of training frequency on ROP zoning data in this paper

Methods W_R W_P W_F1 Kappa

SSFC-ALN_2:1 0.8881± 0.0444 0.8923± 0.0451 0.8869± 0.0452 0.8297± 0.1299

SSFC-ALN _1:1 0.8934± 0.0381 0.8958± 0.0364 0.8922± 0.0390 0.8348± 0.1093

SSFC-ALN _1:2 0.9103± 0.0275 0.9155± 0.0278 0.9097± 0.0266 0.8919± 0.0446
SSFC-ALN _1:3 0.8976± 0.0496 0.9020± 0.0493 0.8962± 0.0506 0.8386± 0.1369

3.4.4. Ablation experiment for labeled data size

In this section, we explore the influence of labeled data size on the performance of ROP zoning.
We randomly selected 20%, 40%, 60% and 80% fundus images from the whole labeled training
set as the new labeled training set. The experimental results of different labeled data sizes are
shown in Table 6, where ‘Baseline_0.2’ denotes Baseline method with 20% labeled training data
and the meaning of the others is similar. There are three main findings from Table 6. First, with
the increase of labeled data, the performance of supervised learning and semi-supervised learning
has been improved. Second, under the same amount of labeled training data, the performance of
semi-supervised learning based on adversarial learning has been greatly improved compared with
the Baseline method. Finally, with the increase of labeled training fundus images, our method
can achieve more improvements than Baseline method. The above results further indicate our
method is effective and can reduce the dependence on labeled training data.

Table 6. Ablation study of labeled data size on ROP zoning data in this paper

Methods W_R W_P W_F1 Kappa

Baseline_0.2 0.6967± 0.0445 0.7054± 0.0527 0.6957± 0.0486 0.6236± 0.0697

Baseline_0.4 0.7213± 0.0169 0.7451± 0.0193 0.7126± 0.0177 0.6104± 0.0304

Baseline _0.6 0.7564± 0.0278 0.7650± 0.0318 0.7558± 0.0273 0.6915± 0.0159

Baseline _0.8 0.7736± 0.0198 0.7782± 0.0218 0.7714± 0.0215 0.7032± 0.0451

Baseline _1.0 0.7800± 0.0198 0.7911± 0.0123 0.7769± 0.0252 0.7226± 0.0574

SSFC-ALN _0.2 0.7399± 0.1050 0.7482± 0.1280 0.7137± 0.1435 0.6082± 0.2307

SSFC-ALN_0.4 0.8472± 0.0340 0.8598± 0.0252 0.8452± 0.0360 0.8091± 0.0583

SSFC-ALN_0.6 0.8785± 0.0570 0.8942± 0.0426 0.8743± 0.0614 0.8500± 0.0870

SSFC-ALN_0.8 0.8946± 0.0333 0.8974± 0.0318 0.8937± 0.0348 0.8463± 0.0655

SSFC-ALN_1.0 0.9103± 0.0275 0.9155± 0.0278 0.9097± 0.0266 0.8919± 0.0446
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Fig. 5. The comparison of generated images and real images. (a)-(d) are the generated
images corresponding to the real image (e) at different training epoch. Similarly, (f)-(i) are
the generated images corresponding to the real image (j) at different training epoch.

4. Conclusion and discussions

The inadequacy of labeled data is a challenge for using deep learning based algorithms in medical
image analysis. The main reasons are as follows: 1) the high-quality labeling process of medical
images is very expensive because it depends on scarce medical expertise; 2) compared with
natural problems, medical image acquisition is more difficult due to privacy problems. Actually,
the collection of sufficient labeled ROP images is more difficult. In this paper, we propose a
novel semi-supervised feature calibration adversarial learning network (SSFC-ALN) for 3-level
ROP zoning. First, we propose a novel attention module named feature calibration module
(FCM), which is embedded in the middle layer of the compound network, and can effectively
calibrate the intermediate features from two dimensions of space and channel to improve the
feature representation of the network. Then, to reduce the dependence on labeled data and make
full use of unlabeled dataset, semi-supervised learning based on GAN is introduced, which can
introduce the idea of adversarial learning mechanism to improve the performance of ROP zoning
in the alternate adversarial training of the generative network and the compound network. To the
best of our knowledge that it is the first time that semi-supervised learning is introduced into
ROP zoning task, and good performance is achieved. Finally, appropriate optimization strategy
is adopted and good classification performance is achieved.

The comprehensive experiments show the effectiveness of the proposed method in our ROP
zoning task. Compared with other state-of-the-art supervised CNN-based methods, our proposed
SSFC-ALN with similar or less complexity can adaptively focus on the related area of ROP
zoning and significantly improve the accuracy of ROP zoning and the generalization ability of
model. In addition, to further evaluate the performance of our proposed method, we also compare
our SSFC-ALN with ImprovedGAN and Pix2PixGAN as shown in Table 3, which demonstrates
that our proposed method has advantages in both accuracy and model complexity. Especially,
the comparison between the generated images and real images is shown in Fig. 5. As can be
observed from Fig. 5, with the increase of training epoch, the images generated by the generator
are getting closer and closer to the original input images, but it is not completely consistent. It
is worth noting that the purpose of this study is to obtain a good classifier (discriminator). As
mentioned in Ref. [59], good semi-supervised classification performance and good generator
cannot be obtained at the same time. It turns out that our practical observation is consistent with
the theory of Ref. [59]. Therefore, in this study, it is not important whether the generated images
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are consistent with the real images. In fact, the important thing is that the use of generators
for image reconstruction can introduce a large amount of unlabeled data, and at the same time
establish an adversarial training mechanism with the compound network.

Although the proposed method has achieved good performance on existing ROP zoning
datasets, there are still some limitations. Firstly, the evaluation of all the comparison algorithms
and the proposed method are based on limited labeled data. More high-quality clinical labeled
ROP zoning data should be collected to further validate the performance of the proposed method.
In addition, biological methods and pathological analysis are not considered in this paper.
Therefore, in the future, we will collect more high-quality labeled data, extend the proposed
method to other ROP related analysis (such as the identification of AP-ROP, plus disease and
five stages of ROP) and combine ROP artificial intelligence diagnosis method with biological
methods and pathological analysis, aiming to comprehensively assist the ophthalmologist in
clinical diagnosis and treatment of ROP.
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